organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(2-Hydroxynaphthalen-1-yl)-(morpholin-4-yl)methyl]benzonitrile

Xin-Yuan Chen,* Min-Min Zhao, Xu Qian and Shao-Gang Hou

Ordered Matter Science Research Center, Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

Received 8 November 2011; accepted 22 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.081; wR factor = 0.210; data-to-parameter ratio = 14.2.

The title compound, $C_{22}H_{20}N_2O_2$, was synthesized *via* a multicomponent reaction using naphthalen-2-ol, morpholine and 4-formylbenzonitrile. The dihedral angle between the naphthalene ring system and the benzene ring is 81.25 (10)°. The morpholine ring adopts a chair conformation. The molecular conformation is stabilized by intramolecular O– $H \cdots N$ and C– $H \cdots O$ hydrogen bonds. In the crystal, intermolecular C– $H \cdots N$ hydrogen bonds link molecules into helical chains running parallel to the *c* axis.

Related literature

For background to multi-component reactions, see: Devi & Bhuyan (2004); Domling & Ugi (2000). Hulme & Gore (2003); Ugi (1962). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

$C_{22}H_{20}N_2O_2$	
$M_r = 344.40$	
Frigonal, R3	
n = 18.294 (3) Å	
c = 28.738 (6) Å	
$V = 8329 (4) \text{ Å}^3$	

Data collection

Rigaku Mercury2 diffractometer	24077 measured reflections
Absorption correction: multi-scan	3326 independent reflections
(CrystalClear; Rigaku, 2005)	1786 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.910, \ T_{\max} = 1.000$	$R_{\rm int} = 0.138$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.081$	7 restraints
$vR(F^2) = 0.210$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
3326 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
235 parameters	

Z = 18

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K

 $0.20 \times 0.15 \times 0.10 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···N1	0.85	1.82	2.601 (4)	151
C21−H21A···O1	0.93	2.54	3.300 (4)	139
C7−H7A···N2 ⁱ	0.93	2.44	3.327 (9)	160

Symmetry code: (i) $-y + \frac{7}{3}$, $x - y + \frac{5}{3}$, $z - \frac{1}{3}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by a start-up grant from Anyang Institute of Technology, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2668).

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
Devi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625–8627.
Domling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168–3210.
Hulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51–80.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Ugi, I. (1962). Angew. Chem. Int. Ed. Engl. 1, 8–21.

supplementary materials

Acta Cryst. (2011). E67, o3484 [doi:10.1107/S160053681104997X]

4-[(2-Hydroxynaphthalen-1-yl)(morpholin-4-yl)methyl]benzonitrile

X.-Y. Chen, M.-M. Zhao, X. Qian and S.-G. Hou

Comment

Multi-component reactions (MCRs) (Hulme & Gore, 2003; Ugi, 1962) involving at least three starting materials in a one-pot reaction have attracted considerable attention in terms of saving both energy and raw materials (Devi & Bhuyan, 2004). Compared to conventional multi-step organic syntheses, MCRs have advantages that include the simplicity of a one-pot procedure and the buildup of complex molecules (Domling & Ugi, 2000). We report here the synthesis and crystal structure of the title compound, 4-4-[(2-hydroxynaphthalen-1-yl)(morpholino)methyl]benzonitrile.

In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthalene ring system and the benzene ring is $81.25 (10)^\circ$. The morpholine ring (N1/C12/C13/O2/C14/C15) assumes a boat conformation, with puckering parameters <i<Q, θ and φ (Cremer & Pople, 1975) of 0.559 (4) Å, 179.3 (4)° and -159 (4)°, respectively. The molecular conformation is stabilized by intramolecular O—H…N and C—H…O hydrogen bonds (Table 1). In the crystal structure, molecules are linked into helical chains parallel to the c axis by intermolecular C—H…N hydrogen bonds.

Experimental

A dry 100 ml flask was charged with 4-formylbenzonitrile (15 mmol), naphthalen-2-ol (15 mmol) and morpholine (15 mmol). The mixture was stirred at 373 K for 12 h, then ethanol (15 ml) was added. After heating under reflux for 1 h, the precipitate was filtrated out and washed with ethanol (10 ml \times 3) to give the title compound. Colourless crystals were obtained by slow evaporation of a dichloromethane solution.

Refinement

All the H atoms attached to C atoms were situated into the idealized positions and treated as riding, with C–H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine), and with $U_{iso}(H) = 1.2U_{eq}(C)$. The hydroxyl H atom was located in a difference Fourier map and refined as riding, with O—H = 0.82 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. Restraints (SIMU and DELU) were used for stabilizing the refinement of atoms C5 and C6. The quality of the crystal available was not optimal and it was weakly diffracting, with no significant data obtained beyond $\theta = 20^{\circ}$. Although recrystallization was attempted repeatedly, no better crystals could be obtained. This could account for the rather high R_{int} value (0.138) and for the poor precision of the analysis.

Figures

Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.

4-[(2-Hydroxynaphthalen-1-yl)(morpholin-4-yl)methyl]benzonitrile

Crystal data

$C_{22}H_{20}N_2O_2$	$D_{\rm x} = 1.236 {\rm ~Mg~m}^{-3}$
$M_r = 344.40$	Mo K α radiation, $\lambda = 0.71073$ Å
Trigonal, $R\overline{3}$	Cell parameters from 3326 reflections
Hall symbol: -R 3	$\theta = 3.1 - 25.2^{\circ}$
a = 18.294 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 28.738 (6) Å	T = 298 K
$V = 8329 (4) \text{ Å}^3$	Block, colourless
Z = 18	$0.20\times0.15\times0.10~mm$
F(000) = 3276	

Data collection

Rigaku Mercury2 diffractometer	3326 independent reflections
Radiation source: fine-focus sealed tube	1786 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.138$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
CCD profile fitting scans	$h = -21 \rightarrow 21$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -21 \rightarrow 21$
$T_{\min} = 0.910, \ T_{\max} = 1.000$	$l = -34 \rightarrow 34$
24077 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.081$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.210$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.0825P)^2 + 7.1283P]$

	where $P = (F_0^2 + 2F_c^2)/3$
3326 reflections	$(\Delta/\sigma)_{max} < 0.001$
235 parameters	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
7 restraints	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.6590 (2)	0.9543 (2)	-0.01901 (11)	0.0550 (9)
N1	0.58212 (15)	0.86806 (15)	0.04966 (8)	0.0455 (7)
O1	0.51037 (19)	0.90933 (18)	-0.01526 (10)	0.0841 (9)
H1	0.5181	0.8920	0.0108	0.126*
C2	0.5846 (3)	0.9432 (2)	-0.03881 (13)	0.0713 (12)
N2	0.7870 (3)	1.3181 (3)	0.14213 (18)	0.146 (2)
O2	0.48604 (18)	0.71036 (17)	0.09733 (11)	0.0913 (10)
C3	0.5833 (5)	0.9667 (3)	-0.08470 (18)	0.110 (2)
H3A	0.5334	0.9598	-0.0972	0.132*
C4	0.6527 (7)	0.9991 (4)	-0.11117 (19)	0.140 (3)
H4A	0.6504	1.0157	-0.1414	0.168*
C5	0.7294 (5)	1.0085 (3)	-0.09428 (18)	0.119 (2)
C6	0.8038 (6)	1.0382 (4)	-0.1215 (2)	0.145 (3)
H6A	0.8020	1.0527	-0.1524	0.174*
C7	0.8752 (5)	1.0465 (4)	-0.1058 (3)	0.160 (4)
H7A	0.9223	1.0672	-0.1250	0.192*
C8	0.8794 (4)	1.0236 (3)	-0.0596 (2)	0.131 (2)
H8A	0.9289	1.0275	-0.0484	0.158*
C9	0.8103 (3)	0.9956 (2)	-0.03107 (17)	0.0894 (15)
H9A	0.8146	0.9826	-0.0003	0.107*
C10	0.7325 (3)	0.9858 (2)	-0.04718 (13)	0.0728 (12)
C11	0.66336 (19)	0.93938 (19)	0.03258 (10)	0.0459 (8)
H11A	0.7076	0.9249	0.0374	0.055*
C12	0.5716 (2)	0.7879 (2)	0.03122 (13)	0.0606 (10)
H12A	0.6184	0.7811	0.0413	0.073*
H12B	0.5719	0.7894	-0.0025	0.073*
C13	0.4897 (3)	0.7141 (2)	0.04806 (16)	0.0834 (13)
H13A	0.4428	0.7192	0.0363	0.100*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

0 4842			
0.4042	0.6621	0.0360	0.100*
0.4948 (3)	0.7858 (2)	0.11521 (14)	0.0771 (12)
0.4925	0.7828	0.1489	0.092*
0.4480	0.7922	0.1045	0.092*
0.5765 (2)	0.8617 (2)	0.10044 (12)	0.0584 (9)
0.5798	0.9124	0.1132	0.070*
0.6235	0.8572	0.1126	0.070*
0.6885 (2)	1.0214 (2)	0.05850 (10)	0.0478 (8)
0.7626 (2)	1.0606 (2)	0.08376 (12)	0.0621 (10)
0.7954	1.0350	0.0863	0.075*
0.7886 (2)	1.1370 (3)	0.10521 (13)	0.0733 (12)
0.8395	1.1633	0.1214	0.088*
0.7396 (3)	1.1747 (2)	0.10287 (12)	0.0651 (11)
0.6641 (2)	1.1355 (2)	0.07818 (12)	0.0626 (10)
0.6302	1.1600	0.0767	0.075*
0.6400 (2)	1.0603 (2)	0.05593 (11)	0.0554 (9)
0.5902	1.0349	0.0388	0.067*
0.7657 (3)	1.2544 (3)	0.12509 (16)	0.0976 (16)
	0.4842 0.4948 (3) 0.4925 0.4480 0.5765 (2) 0.5798 0.6235 0.6885 (2) 0.7626 (2) 0.7954 0.7886 (2) 0.8395 0.7396 (3) 0.6641 (2) 0.6302 0.6400 (2) 0.5902 0.7657 (3)	0.4842 0.6621 0.4948 (3) 0.7858 (2) 0.4925 0.7828 0.4480 0.7922 0.5765 (2) 0.8617 (2) 0.5798 0.9124 0.6235 0.8572 0.6885 (2) 1.0214 (2) 0.7626 (2) 1.0606 (2) 0.7954 1.0350 0.7886 (2) 1.1370 (3) 0.8395 1.1633 0.7396 (3) 1.1747 (2) 0.6641 (2) 1.0355 (2) 0.6302 1.0603 (2) 0.6400 (2) 1.0349 0.7957 (3) 1.2544 (3)	0.48420.66210.03600.4948 (3)0.7858 (2)0.11521 (14)0.49250.78280.14890.44800.79220.10450.5765 (2)0.8617 (2)0.10044 (12)0.57980.91240.11320.62350.85720.11260.6885 (2)1.0214 (2)0.05850 (10)0.7626 (2)1.0606 (2)0.08376 (12)0.79541.03500.08630.7886 (2)1.1370 (3)0.10521 (13)0.83951.16330.12140.7396 (3)1.1747 (2)0.10287 (12)0.6641 (2)1.355 (2)0.07818 (12)0.63021.0603 (2)0.05593 (11)0.59021.03490.03880.7657 (3)1.2544 (3)0.12509 (16)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.086 (3)	0.047 (2)	0.036 (2)	0.036 (2)	0.0023 (19)	-0.0008 (15)
N1	0.0493 (16)	0.0456 (16)	0.0418 (16)	0.0238 (13)	0.0012 (12)	-0.0033 (12)
01	0.090 (2)	0.090 (2)	0.084 (2)	0.0538 (18)	-0.0321 (17)	-0.0075 (16)
C2	0.118 (4)	0.054 (2)	0.045 (2)	0.045 (3)	-0.022 (2)	-0.0062 (18)
N2	0.126 (4)	0.096 (3)	0.153 (4)	0.008 (3)	0.030 (3)	-0.067 (3)
O2	0.106 (2)	0.0635 (19)	0.092 (2)	0.0338 (17)	0.0362 (18)	0.0195 (16)
C3	0.189 (6)	0.092 (4)	0.060 (3)	0.077 (4)	-0.045 (4)	-0.004 (3)
C4	0.280 (10)	0.078 (4)	0.047 (4)	0.078 (5)	-0.024 (5)	0.001 (3)
C5	0.231 (6)	0.043 (2)	0.049 (3)	0.043 (3)	0.054 (3)	0.005 (2)
C6	0.250 (6)	0.058 (3)	0.066 (3)	0.031 (4)	0.070 (4)	-0.002 (2)
C7	0.193 (7)	0.068 (4)	0.144 (7)	0.008 (5)	0.123 (6)	-0.008 (4)
C8	0.129 (5)	0.080 (3)	0.154 (6)	0.028 (3)	0.087 (4)	-0.007 (3)
C9	0.099 (4)	0.064 (3)	0.095 (3)	0.034 (3)	0.051 (3)	0.004 (2)
C10	0.112 (4)	0.041 (2)	0.055 (3)	0.031 (2)	0.028 (2)	-0.0009 (18)
C11	0.0470 (19)	0.049 (2)	0.044 (2)	0.0261 (17)	0.0012 (15)	0.0000 (15)
C12	0.068 (2)	0.052 (2)	0.063 (2)	0.0313 (19)	0.0085 (19)	0.0001 (17)
C13	0.086 (3)	0.048 (2)	0.098 (4)	0.021 (2)	0.013 (3)	-0.004 (2)
C14	0.083 (3)	0.068 (3)	0.077 (3)	0.036 (2)	0.026 (2)	0.010 (2)
C15	0.063 (2)	0.063 (2)	0.049 (2)	0.032 (2)	0.0085 (17)	0.0072 (17)
C16	0.048 (2)	0.053 (2)	0.0362 (19)	0.0210 (17)	0.0011 (15)	0.0025 (15)
C17	0.051 (2)	0.073 (3)	0.055 (2)	0.025 (2)	-0.0007 (17)	-0.0086 (19)
C18	0.051 (2)	0.083 (3)	0.059 (3)	0.014 (2)	0.0010 (18)	-0.020 (2)
C19	0.068 (3)	0.053 (2)	0.045 (2)	0.009 (2)	0.0174 (19)	-0.0085 (17)
C20	0.074 (3)	0.054 (2)	0.059 (2)	0.032 (2)	0.002 (2)	-0.0073 (18)
C21	0.065 (2)	0.049 (2)	0.052 (2)	0.0287 (19)	-0.0093 (17)	-0.0094 (17)
C22	0.081 (3)	0.073 (3)	0.088 (3)	0.000 (2)	0.024 (2)	-0.033 (3)

Geometric parameters (Å, °)

C1—C2	1.392 (5)	С9—Н9А	0.9300
C1—C10	1.422 (5)	C11—C16	1.526 (4)
C1—C11	1.517 (4)	C11—H11A	0.9800
N1—C15	1.464 (4)	C12—C13	1.511 (5)
N1—C12	1.478 (4)	C12—H12A	0.9700
N1—C11	1.488 (4)	C12—H12B	0.9700
O1—C2	1.359 (5)	C13—H13A	0.9700
O1—H1	0.8517	С13—Н13В	0.9700
C2—C3	1.391 (6)	C14—C15	1.505 (5)
N2—C22	1.137 (5)	C14—H14A	0.9700
O2—C14	1.405 (4)	C14—H14B	0.9700
O2—C13	1.418 (5)	C15—H15A	0.9700
C3—C4	1.337 (9)	C15—H15B	0.9700
С3—НЗА	0.9300	C16—C17	1.381 (4)
C4—C5	1.410 (9)	C16—C21	1.389 (4)
C4—H4A	0.9300	C17—C18	1.377 (5)
C5—C6	1.423 (10)	С17—Н17А	0.9300
C5—C10	1.425 (7)	C18—C19	1.379 (5)
C6—C7	1.317 (10)	C18—H18A	0.9300
С6—Н6А	0.9300	C19—C20	1.391 (5)
С7—С8	1.403 (10)	C19—C22	1.437 (6)
С7—Н7А	0.9300	C20—C21	1.374 (4)
C8—C9	1.373 (6)	C20—H20A	0.9300
C8—H8A	0.9300	C21—H21A	0.9300
C8—H8A C9—C10	0.9300 1.420 (6)	C21—H21A	0.9300
C8—H8A C9—C10 C2—C1—C10	0.9300 1.420 (6) 118.9 (4)	C21—H21A N1—C12—H12A	0.9300 109.5
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11	0.9300 1.420 (6) 118.9 (4) 120.6 (3)	C21—H21A N1—C12—H12A C13—C12—H12A	0.9300 109.5 109.5
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B	0.9300 109.5 109.5 109.5
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11 C15—N1—C12	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B	0.9300 109.5 109.5 109.5 109.5
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11 C15—N1—C12 C15—N1—C11	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B	0.9300 109.5 109.5 109.5 109.5 108.1
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11 C15—N1—C12 C15—N1—C11 C12—N1—C11	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3)
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11 C15—N1—C12 C15—N1—C11 C12—N1—C11 C2—O1—H1	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—C12 O2—C13—H13A	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11 C15—N1—C12 C15—N1—C11 C12—N1—C11 C2—O1—H1 O1—C2—C3	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11 C15—N1—C12 C15—N1—C11 C12—N1—C11 C2—O1—H1 O1—C2—C3 O1—C2—C1	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A O2—C13—H13B	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11 C15—N1—C12 C15—N1—C11 C12—N1—C11 C2—O1—H1 O1—C2—C3 O1—C2—C1 C3—C2—C1	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—C12 O2—C13—H13A C12—C13—H13B C12—C13—H13B	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4
C8—H8A C9—C10 C2—C1—C10 C2—C1—C11 C10—C1—C11 C15—N1—C12 C15—N1—C11 C12—N1—C11 C12—N1—C11 C2—O1—H1 O1—C2—C3 O1—C2—C1 C3—C2—C1 C14—O2—C13	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A O2—C13—H13B C12—C13—H13B H13A—C13—H13B	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4
C8-H8A $C9-C10$ $C2-C1-C10$ $C2-C1-C11$ $C10-C1-C11$ $C15-N1-C12$ $C15-N1-C11$ $C12-N1-C11$ $C2-O1-H1$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C14-O2-C13$ $C4-C3-C2$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A C12—C13—H13B H13A—C13—H13B O2—C14—C15	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.5 109.4 109.5 109.
C8 - H8A $C9 - C10$ $C2 - C1 - C10$ $C2 - C1 - C11$ $C10 - C1 - C11$ $C15 - N1 - C12$ $C15 - N1 - C11$ $C12 - N1 - C11$ $C2 - O1 - H1$ $O1 - C2 - C3$ $O1 - C2 - C1$ $C3 - C2 - C1$ $C14 - O2 - C13$ $C4 - C3 - C2$ $C4 - C3 - H3A$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6) 119.4	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A C12—C13—H13B C12—C13—H13B H13A—C13—H13B O2—C14—C15 O2—C14—H14A	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.2
C8-H8A $C9-C10$ $C2-C1-C10$ $C2-C1-C11$ $C10-C1-C11$ $C15-N1-C12$ $C15-N1-C11$ $C12-N1-C11$ $C2-O1-H1$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C14-O2-C13$ $C4-C3-C2$ $C4-C3-H3A$ $C2-C3-H3A$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6) 119.4 119.4	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A C12—C13—H13B H13A—C13—H13B H13A—C13—H13B O2—C14—C15 O2—C14—H14A C15—C14—H14A	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.2
C8-H8A $C9-C10$ $C2-C1-C10$ $C2-C1-C11$ $C10-C1-C11$ $C15-N1-C12$ $C15-N1-C11$ $C12-N1-C11$ $C12-N1-C11$ $C2-O1-H1$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C14-O2-C13$ $C4-C3-C2$ $C4-C3-H3A$ $C2-C3-H3A$ $C3-C4-C5$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6) 119.4 119.4 121.6 (5)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A C12—C13—H13B H13A—C13—H13B O2—C14—C15 O2—C14—H14A C15—C14—H14A O2—C14—H14B	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.2 109.2
C8-H8A $C9-C10$ $C2-C1-C10$ $C2-C1-C11$ $C10-C1-C11$ $C15-N1-C12$ $C15-N1-C11$ $C12-N1-C11$ $C2-O1-H1$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C14-O2-C13$ $C4-C3-C2$ $C4-C3-H3A$ $C2-C3-H3A$ $C3-C4-C5$ $C3-C4-H4A$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6) 119.4 119.4 119.4 119.2	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A C12—C13—H13B H13A—C13—H13B O2—C14—C15 O2—C14—H14A C15—C14—H14A C15—C14—H14B C15—C14—H14B	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.2 109.2 109.2 109.2
C8-H8A $C9-C10$ $C2-C1-C10$ $C2-C1-C11$ $C10-C1-C11$ $C15-N1-C12$ $C15-N1-C11$ $C12-N1-C11$ $C2-O1-H1$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C14-O2-C13$ $C4-C3-C2$ $C4-C3-H3A$ $C3-C4-C5$ $C3-C4-H4A$ $C5-C4-H4A$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6) 119.4 119.4 121.6 (5) 119.2	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A C12—C13—H13B C12—C13—H13B H13A—C13—H13B O2—C14—C15 O2—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.2 109.2 109.2 109.2 109.2 107.9
C8-H8A $C9-C10$ $C2-C1-C10$ $C2-C1-C11$ $C10-C1-C11$ $C15-N1-C12$ $C15-N1-C11$ $C12-N1-C11$ $C12-N1-C11$ $C2-O1-H1$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C14-O2-C13$ $C4-C3-C2$ $C4-C3-H3A$ $C2-C3-H3A$ $C3-C4-C5$ $C3-C4-H4A$ $C5-C4-H4A$ $C4-C5-C6$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6) 119.4 119.4 119.2 119.2 119.2 124.1 (7)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—C12 O2—C13—H13A C12—C13—H13B C12—C13—H13B H13A—C13—H13B O2—C14—C15 O2—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B N1—C15—C14	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.5
C8-H8A $C9-C10$ $C2-C1-C10$ $C2-C1-C11$ $C10-C1-C11$ $C15-N1-C12$ $C15-N1-C11$ $C12-N1-C11$ $C2-O1-H1$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C14-O2-C13$ $C4-C3-C2$ $C4-C3-H3A$ $C2-C3-H3A$ $C2-C3-H3A$ $C3-C4-C5$ $C3-C4-H4A$ $C5-C4-H4A$ $C5-C6$ $C4-C5-C10$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6) 119.4 119.4 121.6 (5) 119.2 119.2 124.1 (7) 118.2 (6)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A C12—C13—H13B C12—C13—H13B C12—C13—H13B O2—C14—C15 O2—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B H14A—C14—H14B N1—C15—C14 N1—C15—C14 N1—C15—H15A	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.2 109.2 109.2 109.2 109.2 109.5
C8-H8A $C9-C10$ $C2-C1-C10$ $C2-C1-C11$ $C10-C1-C11$ $C15-N1-C12$ $C15-N1-C11$ $C12-N1-C11$ $C2-O1-H1$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C14-O2-C13$ $C4-C3-C2$ $C4-C3-H3A$ $C2-C3-H3A$ $C3-C4-C5$ $C3-C4-H4A$ $C5-C4-H4A$ $C4-C5-C6$ $C4-C5-C10$ $C6-C5-C10$	0.9300 1.420 (6) 118.9 (4) 120.6 (3) 120.3 (3) 108.1 (3) 113.5 (2) 109.2 (2) 107.0 116.4 (5) 123.0 (3) 120.6 (5) 109.8 (3) 121.1 (6) 119.4 119.4 119.4 119.2 119.2 124.1 (7) 118.2 (6) 117.6 (8)	C21—H21A N1—C12—H12A C13—C12—H12A N1—C12—H12B C13—C12—H12B H12A—C12—H12B O2—C13—C12 O2—C13—H13A C12—C13—H13A C12—C13—H13B C12—C13—H13B H13A—C13—H13B O2—C14—C15 O2—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B H14A—C15—C14 N1—C15—C14 N1—C15—H15A C14—C15—H15A	0.9300 109.5 109.5 109.5 109.5 108.1 111.4 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.5 109.5

supplementary materials

С7—С6—Н6А	118.0	C14—C15—H15B	109.5
С5—С6—Н6А	118.0	H15A—C15—H15B	108.1
C6—C7—C8	119.3 (6)	C17—C16—C21	118.4 (3)
С6—С7—Н7А	120.3	C17—C16—C11	120.1 (3)
С8—С7—Н7А	120.3	C21-C16-C11	121.5 (3)
C9—C8—C7	119.9 (7)	C18—C17—C16	120.9 (4)
С9—С8—Н8А	120.0	С18—С17—Н17А	119.6
С7—С8—Н8А	120.0	С16—С17—Н17А	119.6
C8—C9—C10	121.9 (5)	C17—C18—C19	120.3 (3)
С8—С9—Н9А	119.0	C17—C18—H18A	119.8
С10—С9—Н9А	119.0	C19—C18—H18A	119.8
C9—C10—C1	123.4 (4)	C18—C19—C20	119.5 (3)
C9—C10—C5	117.2 (5)	C18—C19—C22	121.1 (4)
C1—C10—C5	119.4 (5)	C20—C19—C22	119.4 (4)
N1-C11-C1	111.2 (3)	C21—C20—C19	119.5 (4)
N1—C11—C16	112.3 (2)	C21—C20—H20A	120.2
C1—C11—C16	108.5 (2)	С19—С20—Н20А	120.2
N1—C11—H11A	108.3	C20-C21-C16	121.4 (3)
C1—C11—H11A	108.3	C20-C21-H21A	119.3
C16—C11—H11A	108.3	C16—C21—H21A	119.3
N1-C12-C13	110.6 (3)	N2—C22—C19	179.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
01—H1…N1	0.85	1.82	2.601 (4)	151.
C21—H21A…O1	0.93	2.54	3.300 (4)	139
C7—H7A···N2 ⁱ	0.93	2.44	3.327 (9)	160

Symmetry codes: (i) -y+7/3, x-y+5/3, z-1/3.

